Survival Analysis by Penalized Regression and Matrix Factorization
نویسندگان
چکیده
منابع مشابه
Survival Analysis by Penalized Regression and Matrix Factorization
Because every disease has its unique survival pattern, it is necessary to find a suitable model to simulate followups. DNA microarray is a useful technique to detect thousands of gene expressions at one time and is usually employed to classify different types of cancer. We propose combination methods of penalized regression models and nonnegative matrix factorization (NMF) for predicting surviv...
متن کاملGenome-wide association analysis by lasso penalized logistic regression
MOTIVATION In ordinary regression, imposition of a lasso penalty makes continuous model selection straightforward. Lasso penalized regression is particularly advantageous when the number of predictors far exceeds the number of observations. METHOD The present article evaluates the performance of lasso penalized logistic regression in case-control disease gene mapping with a large number of SN...
متن کاملPenalized Estimators in Cox Regression Model
The proportional hazard Cox regression models play a key role in analyzing censored survival data. We use penalized methods in high dimensional scenarios to achieve more efficient models. This article reviews the penalized Cox regression for some frequently used penalty functions. Analysis of medical data namely ”mgus2” confirms the penalized Cox regression performs better than the cox regressi...
متن کاملComparing two samples by penalized logistic regression
Inference based on the penalized density ratio model is proposed and studied. The model under consideration is specified by assuming that the log–likelihood function of two unknown densities is of some parametric form. The model has been extended to cover multiple samples problems while its theoretical properties have been investigated using large sample theory. A main application of the densit...
متن کاملPenalized wavelet monotone regression
In this paper we focus on nonparametric estimation of a constrained regression function using penalized wavelet regression techniques. This results into a convex optimization problem under linear constraints. Necessary and sufficient conditions for existence of a unique solution are discussed. The estimator is easily obtained via the dual formulation of the optimization problem. In particular w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Scientific World Journal
سال: 2013
ISSN: 1537-744X
DOI: 10.1155/2013/632030